Note
Click here to download the full example code or to run this example in your browser via Binder
Computing gradients#
In this tutorial we will see how to compute gradients of quantities with respect to input values automatically.
import matplotlib.pyplot as plt
import nannos as nn
nn.set_backend("torch")
# nn.set_backend("autograd")
from nannos import grad
bk = nn.backend
Let’s define a function that will return the reflection coefficient for a metasurface:
def f(thickness):
lattice = nn.Lattice(([1, 0], [0, 1]))
sup = lattice.Layer("Superstrate")
sub = lattice.Layer("Substrate", epsilon=2)
ms = lattice.Layer("ms", thickness=thickness, epsilon=6)
sim = nn.Simulation(
[sup, ms, sub],
nn.PlaneWave(1.5),
nh=1,
)
R, T = sim.diffraction_efficiencies()
return R
x = bk.array([0.3], dtype=bk.float64)
print(f(x))
Out:
tensor(0.0317, dtype=torch.float64)
We will compute the finite difference approximation of the gradient:
def first_finite_differences(f, x):
eps = 1e-4
return nn.backend.array(
[(f(x + eps * v) - f(x - eps * v)) / (2 * eps) for v in nn.backend.eye(len(x))],
)
df_fd = first_finite_differences(f, x)
print(df_fd)
Out:
tensor([-0.7177], dtype=torch.float64)
Automatic differentiation:
df = grad(f)
df_auto = df(x)
print(df_auto)
assert nn.backend.allclose(df_fd, df_auto, atol=1e-7)
Out:
tensor([-0.7177], dtype=torch.float64)
A random pattern:
import random
random.seed(2022)
discretization = 2**4, 2**4
def f(var):
lattice = nn.Lattice(([1, 0], [0, 1]), discretization=discretization)
xa = var.reshape(lattice.discretization)
sup = lattice.Layer("Superstrate")
sub = lattice.Layer("Substrate")
ms = lattice.Layer("ms", 1)
ms.epsilon = 9 + 1 * xa + 0j
sim = nn.Simulation(
[sup, ms, sub],
nn.PlaneWave(1.5),
nh=51,
)
R, T = sim.diffraction_efficiencies()
return R
nvar = discretization[0] * discretization[1]
print(nvar)
xlist = [random.random() for _ in range(nvar)]
x = bk.array(xlist, dtype=bk.float64)
Out:
256
Finite differences:
Out:
elapsed time 18.103018283843994s
Automatic differentiation:
Out:
elapsed time 0.17012691497802734s
speedup: 106.40890235493943
Plot gradients
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
_ = ax[0].imshow(df_auto.reshape(*discretization).real)
plt.colorbar(_, ax=ax[0])
ax[0].set_title("autodiff")
_ = ax[1].imshow(df_fd.reshape(*discretization).real)
plt.colorbar(_, ax=ax[1])
ax[1].set_title("finite differences")
plt.tight_layout()
nn.set_backend("numpy")
Total running time of the script: ( 0 minutes 23.646 seconds)
Estimated memory usage: 36 MB