Source code for nannos

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Benjamin Vial
# This file is part of nannos
# License: GPLv3
# See the documentation at nannos.gitlab.io


import pyvista  # isort: skip

pyvista.set_jupyter_backend("trame")
pyvista.set_plot_theme("document")
pyvista.global_theme.background = "white"
# pyvista.global_theme.window_size = [600, 400]
pyvista.global_theme.axes.show = True
# pyvista.global_theme.smooth_shading = True
# pyvista.global_theme.antialiasing = True
# pyvista.global_theme.axes.box = True


import os
import warnings

from packaging.version import parse as parse_version

from .__about__ import __author__, __description__, __version__
from .__about__ import data as _data
from .log import *

warnings.filterwarnings(
    action="ignore",
    category=RuntimeWarning,
    message=".*deadlock.",
)

available_backends = ["numpy", "scipy", "autograd"]


def print_info():
    print(f"nannos v{__version__}")
    print("=============")
    print(__description__)
    print(f"Author: {__author__}")
    print(f"Licence: {_data['License']}")


def has_torch():
    try:
        import torch

        return True
    except ModuleNotFoundError:
        return False


def has_jax():
    try:

        import jax

        return True
    except ModuleNotFoundError:
        return False


def _has_cuda():
    try:
        import torch

        return torch.cuda.is_available()
    except ModuleNotFoundError:
        return False


HAS_TORCH = has_torch()
HAS_CUDA = _has_cuda()

HAS_JAX = has_jax()

if HAS_TORCH:
    available_backends.append("torch")

if HAS_JAX:
    available_backends.append("jax")


def use_gpu(boolean):
    global DEVICE
    global _CPU_DEVICE
    global _GPU_DEVICE
    global _FORCE_GPU
    _FORCE_GPU = 1

    if boolean:
        if BACKEND not in ["torch", "jax"]:
            logger.debug(f"Cannot use GPU with {BACKEND} backend.")
            _delvar("_GPU_DEVICE")
            _CPU_DEVICE = True
        elif BACKEND == "torch" and not HAS_TORCH:
            logger.warning("pytorch not found. Cannot use GPU.")
            _delvar("_GPU_DEVICE")
            _CPU_DEVICE = True
        elif BACKEND == "torch" and not HAS_CUDA:
            logger.warning("cuda not found. Cannot use GPU.")
            _delvar("_GPU_DEVICE")
            _CPU_DEVICE = True
        elif BACKEND == "jax" and not HAS_JAX:
            logger.warning("jax not found. Cannot use GPU.")
            _delvar("_GPU_DEVICE")
            _CPU_DEVICE = True
        else:
            DEVICE = "cuda"
            logger.debug("Using GPU.")
            _delvar("_CPU_DEVICE")
            _GPU_DEVICE = True
    else:
        _CPU_DEVICE = True
        _delvar("_GPU_DEVICE")
        DEVICE = "cpu"
        logger.debug("Using CPU.")
    _reload_package()


def jit(fun, **kwargs):
    # if get_backend() == "jax":
    #     import jax
    #     return jax.jit(fun)
    return fun


def _delvar(VAR):
    if VAR in globals():
        del globals()[VAR]


def _del_vars(VARS):
    for VAR in VARS:
        _delvar(VAR)


[docs] def set_backend(backend): """Set the numerical backend. Parameters ---------- backend : str Either ``numpy``, ``scipy``, ``autograd``, ``torch`` or ``jax``. """ global _NUMPY global _SCIPY global _AUTOGRAD global _JAX global _TORCH global _FORCE_BACKEND _FORCE_BACKEND = 1 if backend == get_backend(): return # # _backend_env_var = os.environ.get("NANNOS_BACKEND") # if _backend_env_var is not None: # if _backend_env_var in available_backends: # if backend != _backend_env_var: # # _delvar("_FORCE_BACKEND") # pass # else: # backend = _backend_env_var if backend == "autograd": logger.debug("Setting autograd backend") _AUTOGRAD = True _del_vars(["_JAX", "_TORCH", "_SCIPY"]) elif backend == "scipy": logger.debug("Setting scipy backend") _SCIPY = True _del_vars(["_JAX", "_TORCH", "_AUTOGRAD"]) elif backend == "jax": logger.debug("Setting jax backend") _JAX = True _del_vars(["_SCIPY", "_TORCH", "_AUTOGRAD"]) elif backend == "torch": _TORCH = True logger.debug("Setting torch backend") _del_vars(["_SCIPY", "_JAX", "_AUTOGRAD"]) elif backend == "numpy": _NUMPY = True logger.debug("Setting numpy backend") _del_vars(["_SCIPY", "_JAX", "_AUTOGRAD", "_TORCH"]) else: raise ValueError( f"Unknown backend '{backend}'. Please choose between 'numpy', 'scipy', 'jax', 'torch' and 'autograd'." ) _reload_package()
def _reload_package(): import importlib import sys import nannos importlib.reload(nannos) its = [s for s in sys.modules.items() if s[0].startswith("nannos")] for k, v in its: importlib.reload(v) def get_backend(): if "_SCIPY" in globals(): return "scipy" elif "_AUTOGRAD" in globals(): return "autograd" elif "_JAX" in globals(): return "jax" elif "_TORCH" in globals(): return "torch" else: return "numpy" def _grad(f): raise NotImplementedError(f"grad is not implemented for {BACKEND} backend.") if "_SCIPY" in globals(): import numpy grad = _grad backend = numpy elif "_AUTOGRAD" in globals(): from autograd import grad, numpy backend = numpy elif "_JAX" in globals(): if HAS_JAX: import jax if parse_version(jax.__version__) >= parse_version("0.4.16"): jax.numpy.trapz = jax.scipy.integrate.trapezoid if DEVICE == "cpu": os.environ["CUDA_VISIBLE_DEVICES"] = "" jax.config.update("jax_platform_name", "cpu") else: # os.environ.pop("CUDA_VISIBLE_DEVICES", None) os.environ["CUDA_VISIBLE_DEVICES"] = "0" jax.config.update("jax_platform_name", "gpu") jax.config.update("jax_enable_x64", True) # TODO: jax eig not implemented on GPU # see https://github.com/google/jax/issues/1259 # TODO: support jax properly (is it faster than autograd? use jit?) # jax does not support eig # for autodif wrt eigenvectors yet. # see: https://github.com/google/jax/issues/2748 # from jax import grad, numpy from jax import numpy grad = _grad backend = numpy else: logger.warning("jax not found. Falling back to default numpy backend.") set_backend("numpy") elif "_TORCH" in globals(): if HAS_TORCH: import numpy import torch # torch.set_default_tensor_type(torch.cuda.FloatTensor) backend = torch def _array(a, **kwargs): if isinstance(a, backend.Tensor): return a.to(torch.device(DEVICE)) else: return backend.tensor(a, **kwargs).to(torch.device(DEVICE)) backend.array = _array def grad(f): def df(x, *args, **kwargs): x = backend.array(x, dtype=bk.float64) _x = x.clone().detach().requires_grad_(True) out = backend.autograd.grad( f(_x, *args, **kwargs), _x, allow_unused=True )[0] return out return df else: logger.warning("pytorch not found. Falling back to default numpy backend.") set_backend("numpy") else: import numpy grad = _grad backend = numpy def get_device(): return "cuda" if "_GPU_DEVICE" in globals() else "cpu" def use_32_bit(yes): global _USE_32 if yes: _USE_32 = True else: _delvar("_USE_32") _reload_package() def get_types(): return ( (backend.float32, backend.complex64) if "_USE_32" in globals() else (backend.float64, backend.complex128) ) BACKEND = get_backend() DEVICE = get_device() FLOAT, COMPLEX = get_types() _backend_env_var = os.environ.get("NANNOS_BACKEND") _gpu_env_var = os.environ.get("NANNOS_GPU") if ( _backend_env_var in available_backends and _backend_env_var is not None and BACKEND != _backend_env_var and "_FORCE_BACKEND" not in globals() ): logger.debug(f"Found environment variable NANNOS_BACKEND={_backend_env_var}") set_backend(_backend_env_var) if _gpu_env_var is not None and "_FORCE_GPU" not in globals(): logger.debug(f"Found environment variable NANNOS_GPU={_gpu_env_var}") use_gpu(True) from . import optimize from .constants import * from .excitation import * from .lattice import * from .parallel import * from .sample import * from .simulation import * from .utils import * array = backend.array